THE REACTION OF α-DIAZOKETONES WITH THIOBENZOPHENONE Shuntaro MATAKA, Seimi ISHI-I, and Masashi TASHIRO* Research Institute of Industrial Science, Kyushu University 86, Hakozaki, Higashi-ku, Fukuoka 812 The reaction of azibenzil ($\underline{1}$) and α -diazophenanthrone ($\underline{2}$) with thiobenzophenone ($\underline{4}$) gave the corresponding 1,3-oxathioles $\underline{5}$ and $\underline{8}$ in 31 and 73% yields, respectively, whereas α -diazoacenaphthenone $\underline{3}$ gave diphenylmethylideneacenaphthenone 9 in 97% yield. Recently, the interconversion between trans-1,2-dibenzoyl-1,2-diphenylepisulfide and the corresponding 1,3-oxathiole was reported. $^{\rm l}$ The reaction of diazo compounds with thioketones, which proceeds via episulfide intermediate, is extensively explored and known to be useful for olefin synthesis. ²⁾ Even on the reaction of α -diazoester with thioketone, in which the formation of 1,3-oxathiole via α -ketoepisulfide could be expected, only α , β -unsaturated carbonyl compounds were isolated. ²⁾ Up to the present time, no paper has reported on the 1,3-oxathiole formation by the reaction of α -diazoketones with thioketones. We now report the first examples of 1,3-oxathiole formation by the reaction of azibenzil $(\underline{1})$ and α -diazophenanthrone $(\underline{2})$ with thiobenzophenone $(\underline{4})$. The equimolecular mixture of $\underline{1}$ and $\underline{4}$ in benzene was heated at reflux for 30 min. After removal of the solvent $\underline{\text{in vacuo}}$, the residue was columnchromatographed on alumina using benzene as an eluent, affording 2,2,4,5-tetraphenyl-1,3-oxathiole ($\underline{5}$) and the 1:1-adduct ($\underline{6}$) of diphenylketene and $\underline{4}$ in 31 and 8% yields, respectively. When anhydrous cuprous sulfate was added to the mixture of $\underline{1}$ and $\underline{4}$ in order to surpress the Wolff rearrangement of $\underline{1}$, vigorous gas evolution was observed even at room temperature. No formation of $\underline{5}$ was observed and only a large amount of the intractable resinous materials was obtained. This suggests that not ketocarbene but $\underline{1}$ itself might participate in the formation of $\underline{5}$. The structure of $\underline{5}$ was deduced from the comparison of its spectral data⁴⁾ with those of the 1,3-oxathioles¹⁾ hitherto known as well as from its chemical conversion; the hydrolysis gave benzophenone and benzil, and hydrogen peroxide oxidation afforded the corresponding S-oxide (7)⁵⁾ in 47% yield. The reaction of $\underline{2}$ with $\underline{4}$ in refluxing toluene for 4 h gave the corresponding 1,3-oxathiole $(\underline{8})^{6}$ in 73% yield together with 4% yield of diphenanthrylidenedione, whereas α -diazoacenaphthenone $(\underline{3})$ gave no 1,3-oxathiole but diphenylmethylideneacenaphthenone $(\underline{9})$, mp 194° of yellow prisms, and diacenaphtylidenedione in 97 and 3% yields, respectively. These results are rationalized in scheme 1 and the formation of $\underline{9}$ in the reaction of $\underline{3}$ with $\underline{4}$ may well be understood in terms of the unfavorable ring strain which might be caused by the carbon-carbon double bond in the intermediate A. The reaction of other α -diazoketones with thiocarbonyls are now in progress. References and Notes - 1) U. Jacobson, T. Kempe and T. Norin, J. Org. Chem., 39, 2722 (1974). - 2) A. Schönberg and E. Frese, Chem. Ber., <u>96</u>, 2420 (1963), and the references cited therein. - 3) H. Staudinger, Helv. Chim. Acta., 3, 862 (1920). - 4) 5; pale yellow prisms. Mp 146-146.5°. IR (KBr-Disk); $\nu_{C=C}$ 1610 cm⁻¹. CMR (CDCl₃); δ 99.7 (C₂), 111.4 (C₄), 143.8 (C₅) ppm. UV (EtOH); λ_{max} 343 nm (ϵ =7550). - 5) $\underline{7}$; colorless prisms. Mp 192-193 . IR (KBr-Disk); $\nu_{\text{C=C}}$ 1610, $\nu_{\text{S} \Rightarrow 0}$ 1070 cm⁻¹. CMR (CDCl₃); δ 106.5 (C₂), 119.4 (C₄), 159.3 (C₅) ppm. - 6) 8; pale yellow plates. Mp 164.5-165.5°. CMR (CDCl₃); δ 104.3 (C₂), 115.2 (C₄), 146.3 (C₅) ppm. (Received June 11, 1977)